已知在定义域上是奇函数,且在上是减函数,图像如图所示.(1)化简:;(2)画出函数在上的图像;(3)证明:在上是减函数.
设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1cos x-an+2sin x满足f′=0. (1)求数列{an}的通项公式; (2)若bn=2,求数列{bn}的前n项和Sn.
设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*. (1)求a1的值; (2)求数列{an}的通项公式.
在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列. (1)求d,an; (2)若d<0,求|a1|+|a2|+…+|an|.
在△ABC中,角A,B,C对应的边分别是 a,b,c.已知cos 2A-3cos(B+C)=1. (1)求角A的大小; (2)若△ABC的面积S=5,b=5,求sin Bsin C的值.
已知函数f(x)=cos,x∈R (1)求f的值; (2)若cos θ=,θ∈,求f.