(本小题满分12分)在ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=cosC.(Ⅰ)求tanC的值;(Ⅱ)若a=,求ABC的面积
设向量,定义一种向量积.已知向量,,点为的图象上的动点,点为的图象上的动点,且满足(其中为坐标原点).(1)请用表示; (2)求的表达式并求它的周期;(3)把函数图象上各点的横坐标缩小为原来的倍(纵坐标不变),得到函数的图象.设函数,试讨论函数在区间内的零点个数.
将形如的符号称二阶行列式,现规定 , 函数=在一个周期内的图象如图所示,为图象的最高点,、为图象与轴的交点,且为正三角形。(1)求的值及函数的单调递增区间;(2)若,在上恒成立,求的取值范围.
设=(5,1),=(1,7),=(4,2),且.(1)是否存在实数 ,使?若存在,求出实数;若不存在,请说明理由;(2)求使取最小值点M的坐标.
已知函数.(1)把的解析式Acos()+B的形式,并用五点法作出在一个周期上的简图;(要求列表)(2)说出的图像经过怎样的变换的图像.
设向量满足||=||=1,且|2-|=.(1)求的值; (2)求与夹角.