(本小题满分16分)数列是递增的等比数列,且.(1)求数列的通项公式;(2)若,求证数列是等差数列;(3)若……,求的最大值.
((本小题满分12分)四棱柱ABCD—A1B1C1D1的底面ABCD是正方形,侧棱底面ABCD,E、F分别是C1D1,C1B1的中点,G为CC1上任一点,EC与底面ABCD所成角的正切值是4。(Ⅰ)确定点G的位置,使平面CEF,并说明理由;(Ⅱ)求二面角F—CE—C1的余弦值。
(本小题满分12分)一个袋子中装有黄、黑两色混合在一起的豆子20公斤(两种豆子的大小相同)。现从中随机抽取50粒豆子进行发芽试验,结果如下:发芽的黄、黑两种豆子分别是27粒和16粒,不发芽的黄、黑两种豆子分别是3粒和4粒。(Ⅰ)估计黄、黑两种豆子分别有多少公斤,以及整个袋子中豆子的发芽率;(Ⅱ)能不能有90%的把握认为发芽不发芽与豆子的颜色有关?(Ⅲ)从3粒黄豆和2粒黑豆中任取2粒,求这2粒豆子中黑豆数X的分布列和期望。
(本小题满分12分)在中,角A、B、C的对边分别为,已知(Ⅰ)求的值;(Ⅱ)求的面积
(本小题满分15分)设函数,其中向量,,,且的图象经过点.(Ⅰ)求实数的值;(Ⅱ)求函数的最小值及此时值的集合.
(本小题满分15分)已知向量 =(cos,sin),=(cos,sin),||=.(1)求cos(-)的值;(2)若0<<,-<<0,且sin=-,求sin的值