本小题满分10分)设函数,(Ⅰ)求函数的最大值和最小正周期.,(Ⅱ)设A,B,C为ABC的三个内角,若,且C为锐角,求
在如图所示的几何体中,四边形ABCD为矩形,AB=2BC=4,BF=CF=AE=DE,EF=2,EF//AB,AF⊥CF。 (Ⅰ)若G为FC的中点,证明:AF//平面BDG; (Ⅱ)求平面ABF与平面BCF夹角的余弦值。
在中,分别为角的对边,且 (Ⅰ)求; (Ⅱ)若,点是线段中点,且,若角大于,求的面积.
已知函数 (Ⅰ)求函数y = f(x)的单调递增区间; (Ⅱ)当x ∈ [0,] 时,函数 y = f(x)的最小值为 ,试确定常数a的值.
已知等差数列满足:,,其中为数列的前n项和. (Ⅰ)求数列的通项公式; (Ⅱ)若,且成等比数列,求的值。
(选修)已知函数 (1)解不等式; (2)对任意,都有成立,求实数的取值范围.