如图,某观测站在城的南偏西的方向上,由城出发有一公路,走向是南偏东,在处测得距为31公里的公路上处,有一人正沿公路向城走去,走了20公里后,到达处,此时、间距离为公里,问此人还需要走多少公里到达城.
已知椭圆的由顶点为A,右焦点为F,直线与x轴交于点B且与直线交于点C,点O为坐标原点,,过点F的直线与椭圆交于不同的两点M,N. (1)求椭圆的方程; (2)求的面积的最大值.
数列满足. (1)求的表达式; (2)令,求.
圆锥PO如图1所示,图2是它的正(主)视图.已知圆O的直径为AB,C是圆周上异于A,B的一点,D为AC的中点. (1)求该圆锥的侧面积S; (2)求证:平面PAC平面POD; (3)若,在三棱锥A-PBC中,求点A到平面PBC的距离.
已知正方形ABCD的边长为2,E,F,G,H分别是边AB,BC,CD,DA的中点. (1)从C,D,E,F,G,H这六个点中,随机选取两个点,记这两个点之间的距离的平方为,求概率P. (2)在正方形ABCD内部随机取一点P,求满足的概率.
已知函数 (1)求的最小正周期和单调递增区间; (2)已知是三边长,且,的面积.求角及的值.