已知函数在区间上的最大值为,最小值为。(1)求和;(2)作出和的图像,并分别指出的最小值和的最大值各为多少?
如图,设是椭圆(a>b>0)的左焦点,直线为对应的准线,直线与轴 交于点, 为椭圆的长轴,已知,且. (Ⅰ)求椭圆的标准方程; (Ⅱ)求证:对于任意的割线,恒有; (Ⅲ)求△面积的最大值.
已知函数,其中. (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)求函数的单调区间与极值.
如图,已知平面是正三角形,。 (Ⅰ)求异面直线与所成角的余弦值; (Ⅱ)求证:平面平面; (Ⅲ)求二面角的余弦值。
在中,内角对边的边长分别是.已知. (Ⅰ)若的面积等于,求; (Ⅱ)若,求的面积.
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min (Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率 (Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望