计算:()2-()2.
2010年5月1日,第41届世博会在上海举办,世博知识在校园迅速传播.小明同学就本班学生对世博知识的了解程度进行了一次调查统计,下图是他采集数据后绘制的两幅不完整的统计图(A:不了解,B:一般了解,C:了解较多,D:熟悉). 请你根据图中提供的信息解答以下问题: (1)求该班共有多少名学生; (2)在条形统计图中,将表示“一般了解”的部分补充完整; (3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数; (4)从该班中任选一人,其对世博知识的了解程度为“熟悉”的概率是多少?
先化简,再求值:,其中.
(1)探究新知: ①如图,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点. 求证:△ABM与△ABN的面积相等. ②如图,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点.试判断△ABM与△ABG的面积是否相等,并说明理由. (2)结论应用: 如图③,抛物线的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D.试探究在抛物线上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等? 若存在,请求出此时点E的坐标,若不存在,请说明理由. ﹙友情提示:解答本问题过程中,可以直接使用“探究新知”中的结论.﹚
如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC,△A1B1C1. ﹙1﹚将△ABC,△A1B1C1如图②摆放,使点A1与B重合,点B1在AC边的延长线上,连接CC1交BB1于点E.求证:∠B1C1C=∠B1BC. ﹙2﹚若将△ABC,△A1B1C1如图③摆放,使点B1与B重合,点A1在AC边的延长线上,连接CC1交A1B于点F.试判断∠A1C1C与∠A1BC是否相等,并说明理由. ﹙3﹚写出问题﹙2﹚中与△A1FC相似的三角形.
如图,在□ABCD中,∠DAB=60°,AB=15㎝. 已知⊙O的半径等于3㎝,AB,AD分别与⊙O相切于点E,F.⊙O在□ABCD内沿AB方向滚动,与BC边相切时运动停止.试求⊙O滚过的路程.