已知函数为奇函数;(1)求以及m的值;(2)在给出的直角坐标系中画出的图象;(3)若函数有三个零点,求实数k的取值范围.
若的图象关于直线对称,其中(1)求的解析式;(2)将的图象向左平移个单位,再将得到的图象的横坐标变为原来的2倍(纵坐标不变)后得到的图象;若函数的图象与的图象有三个交点且交点的横坐标成等比数列,求的值.
已知一企业生产某产品的年固定成本为10万元,每生产千件需另投入2.7万元,设该企业年内共生产此种产品千件,并且全部销售完,每千件的销售收入为万元,且(1)写出年利润(万元)关于年产品(千件)的函数解析式;(2)年产量为多少千件时,该企业生产此产品所获年利润最大?(注:年利润=年销售收入-年总成本)
设函数,其中,角的顶点与坐标原点重合,始边与轴非负半轴重合,终边经过点,且.(1)若点的坐标为(-),求的值;(2)若点为平面区域上的一个动点,试确定角的取值范围,并求函数的值域.
设命题p:函数的定义域为R;命题q:对一切的实数恒成立,如果命题“p且q”为假命题,求实数a的取值范围.
设函数.(1)求函数的单调区间;(2)当时,是否存在整数,使不等式恒成立?若存在,求整数的值;若不存在,请说明理由;(3)关于的方程在上恰有两个相异实根,求实数的取值范围.