(本小题满分14分)如图,在四棱锥E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=1200,F为AE中点。(Ⅰ) 求证:平面ADE⊥平面ABE ;(Ⅱ)求二面角A—EB—D的大小的余弦值;(Ⅲ)求点F到平面BDE的距离。
已知四棱锥的底面为直角梯形,,底面,且,,是的中点。 (Ⅰ)证明:面面; (Ⅱ)求与所成角的余弦值; (Ⅲ)求面与面所成二面角的余弦值.
双曲线与椭圆有共同的焦点,点 是双曲线的渐近线与椭圆的一个交点,求椭圆与双曲线的标准方程。
一个有穷等比数列的首项为,项数为偶数,如果其奇数项的和为,偶数项的和为,求此数列的公比和项数.