已知双曲线的焦距为,其一条渐近线的倾斜角为,且,以双曲线的实轴为长轴,虚轴为短轴的椭圆为.(1)求椭圆的方程;(2)设点是椭圆的左顶点,为椭圆上异于点的两动点,若直线的斜率之积为,问直线是否恒过定点?若横过定点,求出该点坐标;若不横过定点,说明理由.
已知函数,.(Ⅰ)求的极值;(Ⅱ)当时,若不等式在上恒成立,求的取值范围.
如图,在三棱锥中,,,,设顶点A在底面上的射影为R.(Ⅰ)求证: ;(Ⅱ)设点在棱上,且,试求二面角的余弦值.
在△ABC中,已知,其中、、分别为的内角、、所对的边.求:(Ⅰ)求角的大小;(Ⅱ)求满足不等式的角的取值范围.
设是定义在的可导函数,且不恒为0,记.若对定义域内的每一个,总有,则称为“阶负函数”;若对定义域内的每一个,总有,则称为“阶不减函数”(为函数的导函数).(1)若既是“1阶负函数”,又是“1阶不减函数”,求实数的取值范围;(2)对任给的“2阶不减函数”,如果存在常数,使得恒成立,试判断是否为“2阶负函数”?并说明理由.
已知数列是首项为1,公差为的等差数列,数列是首项为1,公比为的等比数列.(1)若,,求数列的前项和;(2)若存在正整数,使得.试比较与的大小,并说明理由.