网格中有一个小甲虫(),它喜欢吃牛粪,它又会把吃剩的牛粪滚成牛粪球()藏进仓库().规定向左为L,向右为R,向上为U,向下D,如:L1表示向左平移一格,D2表示向下平移2格.例如:要把左图中的所有的牛粪球推到最近的仓库里,可以编写程序:L1-R1-U2-D3-R2-U1,小甲虫就能把所有的牛粪球推到最近的仓库.你来试一试,可编写一个怎样的程序才能使小甲虫把右边图上的所有牛粪球推到最近的仓库里.(只需写出一种可行的程序即可)
(本题6分)(1)计算: (2)化简:
(本题14分)在同一平面直角坐标系中有6个点,,.(1)画出的外接圆⊙P,并指出点与⊙P的位置关系;(2)若将直线沿轴向上平移,当它经过点时,设此时的直线为.①判断直线与⊙P的位置关系,并说明理由;②再将直线绕点按顺时针方向旋转,当它经过点时,设此时的直线为.求直线与⊙P的劣弧围成的图形的面积S(结果保留).
(本题12分)某学校规定,该学校教师的每人每月用电量不超过A度,那么这个月只需交10元电费,如果超过A度,则这个月除了仍要交10元用电费外,超过部分还要按每度元交费.⑴胡教师12月份用电90度,超过了规定的A度,则超过的部分应交电费多少元?(用含A的代数式表示)⑵下面是该教师10月、11月的用电情况和交费情况:
根据上表数据,求A值,并计算该教师12月份应交电费多少元?
(本题10分)将一块三角板的直角顶点放在正方形ABCD的对角线交点位置,两边与对角线重合如图甲,将这块三角板绕直角顶点顺时针方向旋转(旋转角小于90°)如图乙.⑴试判断图乙中△ODE和△OCF是否全等,并证明你的结论.⑵若正方形ABCD的对角线长为10,试求三角板和正方形重合部分的面积.
(本题8分)如图,PA、PB是⊙O的切线,CD切⊙O于点E,△PCD的周长为12,∠APB=60°.求:(1)PA的长;(2)∠COD的度数.