甲、乙、丙三人独立地对某一技术难题进行攻关。甲能攻克的概率为,乙能攻克的概率为,丙能攻克的概率为.(1)求这一技术难题被攻克的概率;(2)若该技术难题末被攻克,上级不做任何奖励;若该技术难题被攻克,上级会奖励万元。奖励规则如下:若只有1人攻克,则此人获得全部奖金万元;若只有2人攻克,则奖金奖给此二人,每人各得万元;若三人均攻克,则奖金奖给此三人,每人各得万元。设甲得到的奖金数为X,求X的分布列和数学期望。
在长方体中,,,为中点.(Ⅰ)证明:;(Ⅱ)求与平面所成角的正弦值;(Ⅲ)在棱上是否存在一点,使得∥平面?若存在,求的长;若不存在,说明理由.
抽签方式决定出场顺序.通过预赛,选拔出甲、乙等五支队伍参加决赛. (Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率; (Ⅱ)若决赛中甲队和乙队之间间隔的队伍数记为,求的分布列和数学期望.
已知函数. (Ⅰ)求的定义域及最小正周期; (Ⅱ)求 在区间上的最值.
如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线L交抛物线y=2x于M(x,y),N(x,y)两点. ⑴写出直线L的方程;⑵求xx与yy的值;⑶求证:OM⊥ON
已知函数f(x)=-x+3x+9x+a ⑴求f(x)的单调递减区间;⑵若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值。