在空间直角坐标系中,已知A(3,0,1)和B(1,0,-3),试问(1)在y轴上是否存在点M,满足?(2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M坐标.
如果椭圆的一个焦点坐标为,求的值。
如果方程表示焦点在轴上的椭圆,求实数的取值范围。
如图,过抛物线上一定点,作两条直线分别交抛物线于,(1)求该抛物线上纵坐标为的点到其焦点的距离;(2)当与的斜率存在且倾斜角互补时,求的值,并证明直线的斜率是非零常数。
设两点在抛物线上,是的垂直平分线,(1)当且仅当取何值时,直线经过抛物线的焦点?证明你的结论;(2)当直线的斜率为时,求在轴上的截距的取值范围。
抛物线上的点到点的距离的最小值记为,(1)求的表达式;(2)当时,求的最大值和最小值。