(本小题满分12分)设双曲线的两个焦点分别为,离心率为2.(Ⅰ)求此双曲线的渐近线的方程;(Ⅱ)若、分别为上的点,且,求线段的中点的轨迹方程,并说明轨迹是什么曲线;
【原创】在复平面内,,,(1)若,求点的轨迹方程;(2)过复数对应的点M作斜率为1直线与曲线交于A、B两点,求线段AB的长度.
(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈时,f(x)≤g(x),求a的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).
(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.
已知函数,的图像在点处的切线为.().(1)求函数的解析式;(2)若对任意的恒成立,求实数的取值范围.