已知M、N两点的坐标分别是是常数,令是坐标原点.(Ⅰ)求函数的解析式,并求函数在上的单调递增区间;(Ⅱ)当时,的最大值为,求a的值,并说明此时的图象可由函数的图象经过怎样的平移和伸缩变换而得到?
(本小题满分12分)如图,用一块形状为半椭圆的铁皮截取一个以短轴为底的等腰梯形,问:怎样截才能使所得等腰梯形的面积最大?
(本小题满分12分)如图,在正三棱柱中,分别是的中点,.(Ⅰ)在棱上是否存在点使?如果存在,试确定它的位置;如果不存在,请说明理由;(Ⅱ)求截面与底面所成锐二面角的正切值;(Ⅲ)求点到截面的距离.
(本小题满分12分)甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为,乙投篮命中的概率为.(Ⅰ)求甲至多命中2个且乙至少命中2个的概率;(Ⅱ)若规定每投蓝一次命中得3分,未命中得-1分,求乙所得分数的概率分布和数学期望.
(本小题满分12分)在直角坐标平面内,已知点,其中.(Ⅰ)若,求角的弧度数;(Ⅱ)若,求的值.
23.(本小题满分10分) 将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为,正面向上的次数为偶数的概率为.(Ⅰ)若该硬币均匀,试求与;(Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较与的大小.