在坐标系中描出下列各点的位置:,,,,,.你发现这些点有什么关系?你能再找出一些类似的点吗?
如图1,正方形ABCD是一个6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD中点处的点P按图2的程序移动.(1)请在图中画出点P经过的路径;(2)求点P经过的路径总长.
如图,已知二次函数的图象与x轴交于A、B两点(B在A的左侧),顶点为C, 点D(1,m)在此二次函数图象的对称轴上,过点D作y轴的垂线,交对称轴右侧的抛物线于E点.(1)求此二次函数的解析式和点C的坐标;(2)当点D的坐标为(1,1)时,连接BD、.求证:平分;(3)点G在抛物线的对称轴上且位于第一象限,若以A、C、G为顶点的三角形与以G、D、E为顶点的三角形相似,求点E的横坐标.
已知四边形ABCD和四边形CEFG都是正方形 ,且AB>CE.(1)如图1,连接BG、DE.求证:BG=DE;(2)如图2,如果正方形ABCD的边长为,将正方形CEFG绕着点C旋转到某一位置时恰好使得CG//BD,BG=BD.①求的度数;②请直接写出正方形CEFG的边长的值.
已知抛物线().(1)求抛物线与轴的交点坐标;(2)若抛物线与轴的两个交点之间的距离为2,求的值;(3)若一次函数的图象与抛物线始终只有一个公共点,求一次函数的解析式.
晓东在解一元二次方程时,发现有这样一种解法:如:解方程.解:原方程可变形,得.,,.直接开平方并整理,得.我们称晓东这种解法为“平均数法”. (1)下面是晓东用“平均数法”解方程时写的解题过程.解:原方程可变形,得.,.直接开平方并整理,得 ¤.上述过程中的“”,“” ,“☆”,“¤”表示的数分别为_____,_____,_____,_____.(2)请用“平均数法”解方程:.