晓东在解一元二次方程时,发现有这样一种解法:如:解方程.解:原方程可变形,得.,,.直接开平方并整理,得.我们称晓东这种解法为“平均数法”. (1)下面是晓东用“平均数法”解方程时写的解题过程.解:原方程可变形,得.,.直接开平方并整理,得 ¤.上述过程中的“”,“” ,“☆”,“¤”表示的数分别为_____,_____,_____,_____.(2)请用“平均数法”解方程:.
解二元一次方程组:.
已知△ABC是等腰直角三角形,∠A = 90°,D是腰AC上的一个动点,过C作CE垂直于BD或BD的延长线,垂足为E,如图. (1)若BD是AC的中线,求的值; (2)若BD是∠ABC的角平分线,求的值; (3)结合(1)、(2),试推断的取值范围(直接写出结论,不必证明),并探究的 值能小于吗?若能,求出满足条件的D点的位置;若不能,说明理由
已知抛物线y = x2-2x + m-1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B. (1)求m的值; (2)过A作x轴的平行线,交抛物线于点C,求证:△ABC是等腰直角三角形; (3)将此抛物线向下平移4个单位后,得到抛物线C′,且与x轴的左半轴交于E点,与y轴交于F点,如图.请在抛物线C′上求点P,使得△EFP是以EF为直角边的直角三角形.
王伟准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米. (1)请用a表示第三条边长; (2)问第一条边长可以为7米吗?请说明理由,并求出a的取值范围; (3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,说明理由.
如图,在梯形ABCD中,AB∥CD,∠BAD = 90°,以AD为直径的半圆D与BC相切. (1)求证:OB⊥OC; (2)若AD = 12,∠BCD = 60°,⊙O1与半⊙O外切,并与BC、CD相切,求⊙O1的面积.