(本小题满分14分)如图,椭圆:的左焦点为,右焦点为,离心率.过的直线交椭圆于两点,且△的周长为.(Ⅰ)求椭圆的方程.(Ⅱ)设动直线:与椭圆有且只有一个公共点,且与直线相交于点.试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标;若不存在,说明理由.
二面角大小为,半平面内分别有点A、B,于C、于D,已知AC=4、CD=5,DB=6,求线段AB的长.
已知().求:(1)若,求的值域,并写出的单调递增区间;(2)若,求的值域.
解不等式:
定义:对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.(1)已知二次函数,试判断是否为定义域上的“局部奇函数”?若是,求出满足的的值;若不是,请说明理由;(2)若是定义在区间上的“局部奇函数”,求实数的取值范围;(3)若为定义域上的“局部奇函数”,求实数的取值范围.
已知:如图,等腰直角三角形的直角边,沿其中位线将平面折起,使平面⊥平面,得到四棱锥,设、、、的中点分别为、、、.(1)求证:、、、四点共面;(2)求证:平面平面;(3)求异面直线与所成的角.