(本小题满分12分)学习小组有6个同学,其中4个同学从来没有参加过数学研究性学习活动,2个同学曾经参加过数学研究性学习活动.(1)现从该小组中任选2个同学参加数学研究性学习活动,求恰好选到1个曾经参加过数学研究性学习活动的同学的概率;(2)若从该小组中任选2个同学参加数学研究性学习活动,活动结束后,该小组没有参加过数学研究性学习活动的同学个数是一个随机变量,求随机变量的分布列及数学期望.
为了降低能源损耗,某体育馆的外墙需要建造隔热层.体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:(,为常数),若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和. (1)求的值及的表达式; (2)隔热层修建多厚时,总费用达到最小?并求出最小值.
证明:.
已知实数满足,证明:.
如图1,在直角梯形中,,,.将沿折起,使平面平面,得到几何体,如图2所示. (1)求证:⊥平面;(2)求几何体的体积.
已知向量a=()(),b=() (1)当为何值时,向量a、b不能作为平面向量的一组基底 (2)求|a-b|的取值范围