在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数的图象上的概率;(3)求小明、小华各取一次小球所确定的数x、y满足的概率.
化简求值:3y﹣[2y﹣3(2xy﹣y)﹣xy],其中x=﹣1,y=﹣2.
一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10. (1)通过计算说明小虫是否回到起点P. (2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.
解方程:.
如图,正方形ABCD,DE与HG相交于点O. (1)如图(1),当∠GOD=90°,①求证:DE=GH;②求证:GD+EH≥DE; (2)如图(2),当∠GOD=45°,边长AB=4,HG=2,求DE的长.
某工厂计划为灾区学校生产甲、乙两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套甲型桌椅(一桌两椅)需木料0.5m3,一套乙型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3. (1)有多少种生产方案? (2)现要把生产的全部桌椅运往灾区,已知每套甲型桌椅的生产成本为100元,运费2元;每套乙型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产甲型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)