(本小题满分12分)已知椭圆的离心率为,定点,椭圆短轴的端点是,,且.(1)求椭圆的方程;(2)设过点且斜率不为的直线交椭圆于,两点.试问轴上是否存在定点,使平分?若存在,求出点的坐标;若不存在,说明理由.
极坐标系与直角坐标系xOy有相同的长度单位,以原点D为极点,以x轴正半轴为极轴,曲线Cl的极坐标方程为,曲线C2的参数方程为为参数)。 (1)当时,求曲线Cl与C2公共点的直角坐标; (2)若,当变化时,设曲线C1与C2的公共点为A,B,试求AB中点M轨迹的极坐标方程,并指出它表示什么曲线.
如图,直线交圆于两点,是直径,平分,交圆于点, 过作丄于. (1)求证:是圆的切线; (2)若,求的面积
设函数,曲线在点处的切线方程为 (1)确定的值 (2)若过点(0,2)可做曲线的三条不同切线,求的取值范围 (3)设曲线在点处的切线都过点(0,2),证明:当时,
已知函数的两个极值点为,求的取值范围。
(1)解不等式 (2)求函数的最小值