(本小题满分14分) 围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元)(Ⅰ)将y表示为x的函数(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
已知的图象经过点(0,1),且在x=1处的切线方程是y=x-2。 (1)求的解析式; (2)求的单调递增区间。
已知等差数列中,,。 (1)求数列的通项公式; (2)若数列的前项和,求的值.
在△中,已知、,动点满足. (1)求动点的轨迹方程; (2)设,,过点作直线垂直于,且与直线交于点,试在轴上确定一点,使得; (3)在(II)的条件下,设点关于轴的对称点为,求的值.
已知函数,设 (1)求的单调区间; (2)若以图象上任意一点为切点的切线的斜率恒成立,求实数的最小值; (3)是否存在实数,使得函数的图象与的图象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说明理由。
在直三棱柱中,,直线与平面成30°角. (I)求证:平面平面; (II)求直线与平面所成角的正弦值; (III)求二面角的平面角的余弦值.