(本小题满分14分) 围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元)(Ⅰ)将y表示为x的函数(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
(本小题满分14分) 对函数Φ(x),定义fk(x)=Φ(x-mk)+nk(其中x∈(mk,m+mk],k∈Z,m>0,n>0,且m、n为常数)为Φ(x)的第k阶阶梯函数,m叫做阶宽,n叫做阶高,已知阶宽为2,阶高为3. (1)当Φ(x)=2x时 ①求f0(x)和fk(x)的解析式; ②求证:Φ(x)的各阶阶梯函数图象的最高点共线;
(本小题满分12分)设直线l(斜率存在)交抛物线y2=2px(p>0,且p是常数)于两个不同点A(x1,y1),B(x2,y2),O为坐标原点,且满足=x1x2+2(y1+y2). (1)求证:直线l过定点; (2)设(1)中的定点为P,若点M在射线PA上,满足,求点M 的轨迹方程.
(本小题满分12分)已知等差数列{an2}中,首项a12=1,公差d=1,an>0,n∈N*. (1)求数列{an}的通项公式; (2)设bn=,数列{bn}的前120项和T120;
(本小题满分12分)如图,在四边形ABCD中,AC⊥BD,垂足为O,PO⊥平面ABCD,AO=BO=DO=1,CO=PO=2,E是线段PA上的点,AE∶AP=1∶3. (1)求证:OE∥平面PBC; (2)求二面角D-PB-C的大小.
(本小题满分12分)已知向量=(sin2x,cos2x),=(cos,sin),函数f(x)=+2a(其中a为实常数) (1)求函数f(x)的最小正周期; (2)若x∈[0,]时,函数f(x)的最小值为-2,求a的值.