本题共14分)已知函数。(1)求的定义域;(2)判定的奇偶性;(3)是否存在实数,使得的定义域为时,值域为?若存在,求出实数的取值范围;若不存在,请说明理由。
已知函数f(x)的图象经过点(1,λ),且对任意x∈R, 都有f(x+1)=f(x)+2.数列{an}满足. (1)当x为正整数时,求f(n)的表达式;(2)设λ=3,求a1+a2+a3+…+a2n; (3)若对任意n∈N*,总有anan+1<an+1an+2,求实数λ的取值范围.
如图,三棱锥P﹣ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分线段PC,且分别交AC、PC于D、E两点,又PB=BC,PA=AB. (1)求证:PC⊥平面BDE; (2)若点Q是线段PA上任一点,判断BD、DQ的位置关系,并证明结论; (3)若AB=2,求三棱锥B﹣CED的体积.
如图,正方形的边长为2. (1)在其四边或内部取点,且,求事件:“”的概率; (2)在其内部取点,且,求事件“的面积均大于”的概率.
已知A、B、C是三角形ABC的三内角,且,并且 (1)求角A的大小。 (2)的递增区间。
已知函数为奇函数,且在处取得极大值2. (Ⅰ)求的解析式; (Ⅱ)过点(可作函数图像的三条切线,求实数的取值范围; (Ⅲ)若对于任意的恒成立,求实数的取值范围.