本题共14分)已知函数。(1)求的定义域;(2)判定的奇偶性;(3)是否存在实数,使得的定义域为时,值域为?若存在,求出实数的取值范围;若不存在,请说明理由。
已知函数. (1)当时,求函数的极值; (2)若函数在区间上是减函数,求实数的取值范围; (3)当时,函数图像上的点都在所表示的平面区域内,求实数的取值范围.
已知椭圆:的离心率为,过椭圆右焦点的直线与椭圆交于点(点在第一象限). (1)求椭圆的方程; (2)已知为椭圆的左顶点,平行于的直线与椭圆相交于两点.判断直线是否关于直线对称,并说明理由.
如图,垂直于矩形所在平面,,. (1)求证:; (2)若矩形的一个边,,则另一边的长为何值时,三棱锥的体积为?
从某校高三上学期期末数学考试成绩中,随机抽取了名学生的成绩得到频率分布直方图如下: (1)根据频率分布直方图,估计该校高三学生本次数学考试的平均分; (2)若用分层抽样的方法从分数在和的学生中共抽取人,该人中成绩在的有几人? (3)在(2)中抽取的人中,随机抽取人,求分数在和各人的概率.
在锐角中,角所对边分别为,已知. (1)求的值; (2)若,求的值.