(本小题满分12分)如图,已知三棱柱的侧棱与底面垂直,,,,分别是,的中点,点在直线上,且; (1)证明:无论取何值,总有; (2)当取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值; (3)是否存在点,使得平面与平面所成的二面角为30º,若存在,试确定点的位置,若不存在,请说明理由.
(本题满分14分)在△ABC中,已知B=45°,D是BC边上的一点,AB=5,AC=14,DC=6,求AD的长.
(本题满分14分) 已知数列的前项和为,点均在函数的图象上 (1)求数列的通项公式 (2)若数列的首项是1,公比为的等比数列,求数列的前项和.
已知方向向量为的直线过点和椭圆C: 的焦点,且椭圆C的中心关于直线的对称点在椭圆的右准线上, 直线过点交椭圆C于M、N两点. (1)求椭圆C的方程; (2)若设是椭圆C的右焦点,若,求直线的方程; (3)设(为坐标原点),当直线绕点转动时,求的取值范围.
已知圆C满足:①截Y轴所得弦长为2,②被X轴分成两段弧,其弧长的比为3∶1,③圆心到直线:的距离为. (1)求圆C的方程; (2)过点的直线能否与圆C相切,若相切,求切线方程,若不相切,说明理由.
已知椭圆C:,直线过点P交椭圆C于A、B两点. (1)若P是AB中点,求直线的方程及弦AB的长; (2)求弦AB中点M的轨迹方程.