你能比较与的大小吗?为了解决这个问题,我们首先写出它的一般形式,即比较与的大小(n是正整数),然后我们从分析n=1,n=2,n=3……中发现规律,经归纳、猜想得出结论(1)通过计算,比较下列各组中两数的大小:(在横线上填写“>”“=”“<”)①12 21,②23 32;③34 43;④45 54;⑤56 65(2)从第(1)题的结果中,经过归纳,可以猜想出与(n+1)n的大小关系是 (3)根据以上归纳.猜想得到的一般结论,试比较下列两数的大小:与
已知:Rt△A′BC′≌Rt△ABC,∠A′C′B=∠ACB=90°,∠A′BC′=∠ABC=60°,Rt△A′BC′可绕点B旋转,设旋转过程中直线CC′和AA′相交于点D. (1)如图1所示,当点C′在AB边上时,判断线段AD和线段A′D之间的数量关系,并证明你的结论; (2)将Rt△A′BC′由图1的位置旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由; (3)将Rt△A′BC′由图1的位置按顺时针方向旋转α角(0°≤α≤120°),当A、C′、A′三点在一条直线上时,请直接写出旋转角的度数.
某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.
(1)求一张薄板的出厂价与边长之间满足的函数关系式; (2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价﹣成本价), ①求一张薄板的利润与边长之间满足的函数关系式. ②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少? 参考公式:抛物线:y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)
如图,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB. (1)求证:BC为⊙O的切线; (2)若,AD=2,求线段BC的长.
箱子里有3个红球和2个黄球,从箱子中一次拿两个球出来. (1)请你用列举法(树形图或列表)求一次拿出的两个球中时一红一黄的概率; (2)往箱子中再加入x个白球,从箱子里一次拿出的两个球,多次实验统计如下 取出两个球的次数 20 30 50 100 150 200 400 至少有一个球是白球的次数 13 20 35 71 107 146 288 至少有一个球是白球的频率 0.65 0.67 0.70 0.71 0.713 0.73 0.72 请你估计至少有一个球是白球的概率是多少? (3)在(2)的条件下求x的值.(=0.7222222…)
为丰富学生的学习生活,某校九年级1班组织学生参加春游活动,所联系的旅行社收费标准如下: 如果人数超过25人,每增加1人,人均活动费用降低2元,但人均活动费用不得低于75元. 如果人数不超过25人,人均活动费用为100元. 春游活动结束后,该班共支付给该旅行社活动费用2800元,请问该班共有多少人参加这次春游活动?