解方程:
如图,△ABC中,点D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的长.
用配方法解方程:.
如图,二次函数的图象与x轴交于点A(﹣1,0),B(2,0),与y轴相交于点C.(1)求二次函数的解析式;(2)若点E是第一象限的抛物线上的一个动点,当四边形ABEC的面积最大时,求点E的坐标,并求出四边形ABEC的最大面积;(3)若点M在抛物线上,且在y轴的右侧.⊙ M与y轴相切,切点为D.以C,D,M为顶点的三角形与△AOC相似,求点M的坐标.
如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC,AD=AE.连接BD交AE于M,连接CE交AB于N,BD与CE交点为F,连接AF.(1)如图1,求证:BD⊥CE;(2)如图1,求证:FA是∠CFD的平分线;(3)如图2,当AC=2,∠BCE=15°时,求CF的长.
已知:如图,一次函数的图象与反比例函数的图象交于A、B两点,且点A的坐标为(1,m).(1)求反比例函数的表达式;(2)点C(n,1)在反比例函数的图象上,求△AOC的面积;(3)在x轴上找出点P,使△ABP是以AB为斜边的直角三角形,请直接写出所有符合条件的点P的坐标.