(12分) 若二次函数f(x)=ax2+bx+c(a≠0)的图象关于y轴对称,且f(-2)>f(3),设m>-n>0.(1) 试证明函数f(x)在(0,+∞)上是减函数;(2) 试比较f(m)和f(n)的大小,并说明理由.
已知++=,++=, 通过观察上述两等式,请写出一般性的命题,并给出证明.
(12分) 已知函数 (1)求函数在上的最大值和最小值. (2)求证:在区间[1,+,函数的图象,在函数的图象下方。
一出租车每小时耗油的费用与其车速的立方成正比,当车速为时,该车耗油的费用为8元/h,其他费用为12元/h.;甲乙两地的公路里程为160km,在不考虑其他因素的前提下,为了使该车开往乙地的总费用最低,该车的车速应当确定为多少公里/小时?
已知函数的图象经过点,曲线在M处的切线恰好与直线垂直。 (I)求实数的值; (II)若函数在区间上单调递增,求的取值范围。
已知函数的导函数的图象关于直线对称。 (I)求的值; (II)若函数无极值,求的取值范围。