指出下列命题中哪些是全称命题,哪些是特称命题,并判断真假.(1)若a>0,且a≠1,则对任意实数x,ax>0.(2)对任意实数x1,x2,若x1<x2,则tan x1<tan x2.(3)∃T0∈R,使|sin(x+T0)|=|sin x|.(4)∃x0∈R,使x+1<0.
已知数列满足: (1)若数列是以常数为首项,公差也为的等差数列,求的值; (2)若,求证:对任意都成立; (3)若,求证:对任意都成立;
已知圆M:,直线,上一点A的横坐标为,过点A作圆M的两条切线,,切点分别为B,C. (1)当时,求直线,的方程; (2)当直线,互相垂直时,求的值; (3)是否存在点A,使得?若存在,求出点A的坐标,若不存在,请说明理由.
已知函数(、为常数). (1)若,解不等式; (2)若,当时,恒成立,求的取值范围.
某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙两组数据的平均数都为10. (1)求的值; (2)分别求出甲、乙两组数据的方差和, 并由此分析两组技工的加工水平; (3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率. (注:方差,为数据的平均数)
在中,角对的边分别为,且. (1)求的值; (2)若,求的面积.