已知数列 { a n } : a 1 = 1 , a 2 = 2 , a 3 = r , a n + 3 = a n + 2 ( n 是正整数),与数列 { b n } : b 1 = 1 , b 2 = 0 , b 3 = - 1 , b 4 = 0 , b n + 4 = b n ( n 是正整数).记 T n = b 1 a 1 + b 2 a 2 + b 3 a 3 + . . . + b n a n . (1)若 a 1 + a 2 + a 3 + . . . + a 12 = 64 ,求 r 的值; (2)求证:当 n 是正整数时, T 128 = - 4 n ; (3)已知 r > 0 ,且存在正整数 m ,使得在 T 12 m + 1 , T 12 m + 2 , . . . , T 12 m + 12 中有4项为100.求 r 的值,并指出哪4项为100.
(本小题满分12分) 已知R. (1)求函数的周期和单调减区间; (2)若,且,求和的值.
(本小题满分12分)设p:实数x满足,其中,实数满足 (Ⅰ)若且为真,求实数的取值范围; (Ⅱ)若┐q是┐p的必要不充分条件,求实数的取值范围.
(本小题满分12分)口袋里有分别标有数字1、2、3、4的4只白球和分别标有数字5、6的2只红球,这些球除了颜色和所标数字外完全相同.某人从中随机取出一球,记下球上所标数字后放回,再随机取出一球并记下球上所标数字, (Ⅰ)求两次取出的球上的数字之和大于8的概率; (Ⅱ)求两次取出的球颜色不同的概率;
(本小题满分12分)下表是种产品销售收入与销售量之间的一组数据:
(I)画出散点图; (II)求出回归方程; (III)根据回归方程估计销售量为9吨时的销售收入。 (参考数据:2×7+3×8+5×9+6×12=155,)
(本小题满分12分)为了了解2011年某校高三学生的视力情况,随机抽查了一部分学生视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],… ,(5.1,5.4].经过数据处理,得到如下频率分布表:
(I)求频率分布表中未知量n,x,y,z的值; (II)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.