如图,某住宅小区的平面图呈扇形 A O C .小区的两个出入口设置在点 A 及点 C 处,小区里有两条笔直的小路 A D , D C ,且拐弯处的转角为 120 ° .已知某人从 C 沿 走到 C D 用了10分钟,从 D 沿 D A 走到 A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径 O A 的长(精确到1米).
在研究某种新措施对猪白痢的防治效果问题时,得到了以下数据:
试利用图形和独立性检验来判断新措施对防治猪白痢是否有效?
研究人员选取170名青年男女大学生的样本,对他(她)们进行一种心理测验,发现有60名女生对该心理的最后一个题目的反应是:作肯定的18名,否定42名;男生110名在相同的项目上作出肯定的有22名,否定的有88名.请问性别与态度之间是否存在某种关系?请分别用图形与独立性检验的方法进行判断.
已知是等差数列的前项和,且. (1)求; (2)令,计算和,由此推测数列是等差数列还是等比数列,证明你的结论.
某商场为经营一批每件进价是10元的小商品,对该商品进行为期5天的市场试销.下表是市场试销中获得的数据.
根据表中的数据回答下列问题: (1)试销期间,这个商场试销该商品的平均日销售利润是多少? (2)试建立一个恰当的函数模型,使它能较好地反映日销售量(件)与销售单价(元)之间的函数关系,并写出这个函数模型的解析式; (3)如果在今后的销售中,该商品的日销售量与销售单价仍然满足(2)中的函数关系,试确定该商品的销售单价,使得商场销售该商品能获得最大日销售利润,并求出这个最大的日销售利润.
如图,在四面体中,,,且分别为的中点. (1)求证:; (2)在棱上是否存在一点,使得∥平面?证明你的结论.