某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?
实践与探究: 对于任意正实数a、b,∵≥0, ∴≥0,∴≥ 只有当a=b时,等号成立。 结论:在≥(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值。根据上述内容,回答下列问题: (1)若m>0,只有当m=时,有最小值; 若m>0,只有当m=时,2有最小值. (2)如图,已知直线L1:与x轴交于点A,过点A的另一直线L2与双曲线相交于点B(2,m),求直线L2的解析式. (3)在(2)的条件下,若点C为双曲线上任意一点,作CD∥y轴交直线L1 于点D,试求当线段CD最短时,点A、B、C、D围成的四边形面积.
如图,一次函数的图象与反比例函数(x<0)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0),当时,一次函数值大于反比例函数值,当时,一次函数值小于反比例函数值. (1)求一次函数的解析式; (2)设函数(x>0)的图象与(x<0)的图象关于y轴对称,在(x>0)的图象上取一点P(P点的横坐标大于2),过P点作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.
按如图所示的程序进行运算,并回答问题: (1)开始输入的值为3,那么输出的结果是_________. (2)要使开始输入的x值只经过一次运行就能输出结果,则x的取值范围是_____________. (3)要使开始输入的x值经过两次运行,才能输出结果, 则x的取值范围是____________.
如图,已知,是一次函数的图象和反比例函数的图象的两个交点. (1)求反比例函数和一次函数的函数关系式; (2)求△的面积; (3)则方程的解是;(请直接写出答案) (4)则不等式的解集是.(请直接写出答案)
在上海世博会期间,某商场印有“海宝”的服装很畅销,就用32000元购进了一批,上市后很快脱销,商场又用68000元购进第二批,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种服装多少套? (2)如果这两批服装每件的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率=×100%)