1471年,德国数学家米勒提出了雕塑问题:假定有一个雕塑高AB=3米,立在一个底座上,底座的高BC=2.2米,一个人注视着这个雕塑并朝它走去,这个人的水平视线离地1.7米,问此人应站在离雕塑底座多远处,才能使看雕塑的效果最好,所谓看雕塑的效果最好是指看雕塑的视角最大,问题转化为在水平视线EF上求使视角最大的点,如图:过A、B两点,作一圆与EF相切于点M,你能说明点M为所求的点吗?并求出此时这个人离雕塑底座的距离?
先化简:,再选择一个恰当的x值代入并求值.
(1)解不等式,并把解集表示在数轴上(2)解分式方程
操作实验: 如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称. 所以△ABD≌△ACD,所以∠B=∠C. 归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等. 根据上述内容,回答下列问题: 思考验证: 如图(4),在△ABC中,AB=AC. 试说明∠B=∠C的理由.(添加辅助线说明) 探究应用: 如图(5),CB⊥AB,垂足为B,DA⊥AB,垂足为A.E为AB的中点,AB=BC,CE⊥BD于F,连接DC、DE、AC,AC与 DE交于点O. (1)BE与AD是否相等?为什么? (2)小明认为AC垂直平分线段DE,你认为对吗?说说你的理由。 (3)∠DBC与∠DCB相等吗?试说明理由.
先阅读下面的内容,再解决问题, 例题:若m2+2mn+2n2-6n+9=0,求m和n的值. 解:∵m2+2mn+2n2—6n+9=0 ∴m2+2mn+n2+n2-6n+9=0 ∴(m+n)2+(n-3)2=0 ∴m+n=0,n-3=0 ∴m=-3,n=3 问题(1)若x2+2y2-2xy+4y+4=0,求的值. 问题(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b-41,且c是△ABC中最长的边,求c的取值范围.
如图,四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F. 试说明:(1)△CBE≌△CDF; (2)AB+AD=2AF.