如图,B、C、E三点在一条直线上,⊿ABC和⊿DCE都为等边三角形,连接AE、DB、 (1)试说出 AE=BD的理由、 (2)如果把⊿DCE绕C点顺时针旋转一个角度,使B、C、E不在一条直线上,(1)中的结论还成立吗?(只回答,不说理由) (3)在(2)中若AE、BD相交于P, 求∠APB的度数、
已知,如图四,△ABC中,BD是AC边上的中线,DB⊥BC于B,且∠ABC=120°,求证:AB=2BC.
如图所示,已知AC∥BD,EA,EB分别平分∠CAB和∠DBA,CD过E点.求证:AB=AC+BD.
如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=60°,求∠DAC的度数.
在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-3,0),B(-3,-4),C(-1,-4). (1)求△ABC的面积; (2)在图中作出△ABC关于轴对称的图形△DEF,点A、B、C的对称点分别为D、E、F,并写出D、E、F的坐标.
如图,AC=DC,BC=EC,∠ACD = ∠BCE.求证:∠A=∠D.