(本小题满分12分)已知函数.(1)判断其奇偶性;(2)指出该函数在区间上的单调性并证明;(3)利用(1)和(2)的结论,指出该函数在上的增减性.(不用证明)
已知数列的前项和为,常数,且对一切正整数都成立。 (Ⅰ)求数列的通项公式; (Ⅱ)设,,当为何值时,数列的前项和最大?
在△ABC中,角A,B,C的对边分别为a,b,c,. (1)求角C的大小; (2)若△ABC的外接圆直径为1,求的取值范围.
已知是同一平面内的三个向量,其中. (1)若,且,求:的坐标 (2)若,且与垂直,求与的夹角.
已知函数 (1)求不等式的解集; (2)若关于x的不等式的解集非空,求实数的取值范围.
如图,已知四边形ABCD内接于,且AB是的直径,过点D的的切线与BA的延长线交于点M. (1)若MD=6,MB=12,求AB的长; (2)若AM=AD,求∠DCB的大小.