设集合(1)若,求的值;(2)若,求的值.
(设z=2x+y,变量x,y满足条件(1)求z的最大值与最小值;(2)已知 ,求的最大值及此时的值;(3)已知 ,求的最小值及此时的值.
(提高过浑河大桥的车辆通行能力可改善整个沈城的交通状况.在一般情况下,浑河大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数记作.当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当时,车流速度v是车流密度x的一次函数.(1)当时,求函数的表达式;(2)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时).
(等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列, b1=1,且b2S2=64,b3S3=960.(1)求an与bn;(2)求++…+的值;(3)记,记数列为,求.
已知数列是公比为的等比数列,且成等差数列.(1)求的值;(2)设数列是以2为首项,为公差的等差数列,其前项和为,试比较与的大小.
本题满分10分)已知全集U=R,集合A={x|x2-x-6<0},B={x|x2+2x-8>0},C={x|x2-4ax+3a2<0}(a<0),(1);(2)若命题p:∁U(A∪B), 命题q:C,若p是q的充分不必要条件,求实数a的取值范围.