(本小题满分13分)已知函数.(1) 若函数的定义域和值域均为,求实数的值;(2) 若在区间上是减函数,且对任意的,总有,求实数的取值范围;(3) 若在上有零点,求实数的取值范围.
如图,矩形中,,,平面,,,为的中点.(1)求证:平面.(2)若,求平面与平面所成锐二面角的余弦值.
甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为、、,且他们是否破译出密码互不影响,若三人中只有甲破译出密码的概率为.(1)求的值.(2)设甲、乙、丙三人中破译出密码的人数为,求的分布列和数学期望.
已知函数,(Ⅰ)已知常数,解关于的不等式; (Ⅱ)若函数的图象恒在函数图象的上方,求实数的取值范围.
已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程为(为参数).若直线与圆相交于,两点,且.(Ⅰ)求圆的直角坐标方程,并求出圆心坐标和半径; (Ⅱ)求实数的值.
已知矩阵(Ⅰ)求矩阵的逆矩阵; (Ⅱ)若直线经过矩阵变换后的直线方程为,求直线的方程.