(本小题满分13分)把一个正方体的表面涂上红色,在它的长、宽、高上等距离地各切三刀,则大正方体被分割成64个大小相等的小正方体,将这些小正方体均匀地搅混在一起,如果从中任取1个,求下列事件的概率(1)事件A=“这个小正方体各个面都没有涂红色”(2)事件B=“这个小正方体只有1个面涂红色”(3)事件C=“这个小正方体至少2个面涂红色”
已知直线平行于直线,并且与两坐轴围成的三角形的面积为求直线的方程。
已知抛物线关于y轴对称,它的顶点在坐标原点,并且经过点M(), 求它的标准方程。
已知函数f(x)=lnx-ax2+(2-a)x (1)讨论f(x)的单调性;(2)设a>0,证明:当0<x<时,f>f; (3)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明f′(x0)<0.
如图,抛物线第一象限部分上的一系列点与y正半轴上的点及原点,构成一系列正三角形(记为O),记。 (1)求的值;(2)求数列的通项公式; (3)求证:
已知函数.若过点可作曲线的切线有三条,求实数的取值范围.