如图,四棱锥中,⊥底面,底面为梯形,,,且,点是棱上的动点.(Ⅰ)当∥平面时,确定点在棱上的位置;(Ⅱ)在(Ⅰ)的条件下,求二面角的余弦值.
设服从,求下列各式的值: (1)(2)(3)
分别求正态总体N(μ,σ2)在区间(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)内取值的概率。
已知圆,及点, (1)若在圆上,求线段的长及直线的斜率; (2)若为圆上任一点,求的最大值和最小值; (3)若实数满足,求的最大值和最小值.
直线经过点,它的倾斜角是直线倾斜角的2倍,求直线的方程.
两个厂距一条河分别为和,两厂之间距离,把小河看作一条直线,今在小河边上建一座提水站,供两厂用水,要使提水站到两厂铺设的水管长度最短,问提水站应建在什么地方?