已知26辆货车以相同速度v由A地驶向400千米处的B地,每两辆货车间距离为d千米,现已知d与v的平方成正比,且当v=20(千米/时)时,d=1(千米).(1)写出d与v的函数关系;(2)若不计货车的长度,则26辆货车都到达B地最少需要多少小时?此时货车速度是多少?
某中学经市批准建设分校,工程从2010年底开工到2013年底完工,分三期完成,经过初步招标淘汰后,确定由甲、乙两建筑公司承建,且每期工程由两公司之一独立完成,必须在建完前一期工程后再建后一期工程,已知甲公司获得第一期,第二期,第三期工程承包权的概率分别是,,.(I)求甲乙两公司均至少获得l期工程的概率;(II)求甲公司获得的工程期数的分布列和数学期望E(X).
设函数,曲线通过点(0,2a+3),且在处的切线垂直于y轴.(I)用a分别表示b和c;(II)当bc取得最大值时,写出的解析式;(III)在(II)的条件下,g(x)满足,求g(x)的最大值及相应x值.
已知a,b,c分别为ABC的三个内角A,B,C的对边,向量=(sinA,1),=(cosA,),且//.(I)求角A的大小;(II)若a=2,b=2,求ABC的面积.
给定椭圆C:,若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.(I)求椭圆C的方程;(II)已知斜率为k(k≠0)的直线l与椭圆C交于不同的两点A,B,点Q满足且=0,其中N为椭圆的下顶点,求直线在y轴上截距的取值范围.
设函数,曲线通过点(0,2a+3),且在处的切线垂直于y轴.(I)用a分别表示b和c;(II)当bc取得最大值时,写出的解析式;(III)在(II)的条件下,若函数g(x)为偶函数,且当时,,求当时g(x)的表达式,并求函数g(x)在R上的最小值及相应的x值.