已知等差数列{an}的前n项的和记为Sn.如果a4=-12,a8=-4.(1)求数列{an}的通项公式;(2)求Sn的最小值及其相应的n的值;(3)从数列{an}中依次取出a1,a2,a4,a8,…,,…,构成一个新的数列{bn},求{bn}的前n项和
(1)化简: (2)已知tan α=3,计算的值.
数列的前n项和为,存在常数A,B,C,使得对任意正整数n都成立. ⑴若数列为等差数列,求证:3A B+C=0; ⑵若设数列的前n项和为,求; ⑶若C=0,是首项为1的等差数列,设数列的前2014项和为P,求不超过P的最大整数的值.
要制作一个如图的框架(单位:m),要求所围成的总面积为19.5(m2),其中ABCD是一个矩形,EFCD是一个等腰梯形,梯形高h=AB,tan∠FED=,设AB=xm,BC=ym. (1)求y关于x的表达式; (2)如何设计x、y的长度,才能使所用材料最少?
已知△ABC外接圆半径R=1,且. (1)求角的大小; (2)求△ABC面积的最大值.
设等比数列的前项和为,已知成等差数列,(1)求数列的公比,(2)若,求,并讨论的最大值