如图,已知平面是圆柱的轴截面(经过圆柱的轴的截面),BC是圆柱底面的直径,O为底面圆心,E为母线的中点,已知(I))求证:⊥平面;(II)求二面角的余弦值.(Ⅲ)求三棱锥的体积.
(本小题满分12分)某学校1800名学生在一次一百米测试中,全部介于13秒与18秒之间,抽取其中的50个样本,将测试结果按如下方式分成五组,第一组,第二组,第三组,…,第五组,下图是按上述分组方法得到的频率分布直方图. (1)若成绩小于15秒认为良好,求该样本在这在这次百米测试中成绩良好的人数; (2)请估计学校1800名学生中,成绩属于第四组的人数; (3)请根据频率分布直方图,求样本数据的众数与平均数; (4)请根据频率分布直方图,求样本数据的中位数.(保留两小数)
(本小题满分14分)函数(),设(). (1)试把表示成关于的函数; (2)把函数的最大值记为,求; (3)当时,试求满足的所有实数的值.
(本小题满分12分)如图,已知底角为450角的等腰梯形ABCD,底边BC长为7cm,腰长为cm,当一条垂直于底边BC(垂足为F)的直线把梯形ABCD分成两部分,令|BF|x,求左边部分的面积y关于x的函数解析式,并画出图象。
(本小题满分12分)设函数是增函数,对于任意都有 (1)求; (2)证明是奇函数; (3)解不等式.
(本小题满分12分)已知二次函数f(x)满足:函数f(x+1)为偶函数,f(x)的最小值为-4,函数f(x)的图象与x轴交点为A、B,且AB=4,求二次函数的解析式.