某企业决定用万元援助灾区所学校,用于搭建帐篷和添置教学设备。根据各校不同的受灾情况,该企业捐款的分配方案如下:所有学校得到的捐款数都相等,到第所学校的捐款恰好分完,捐款的分配方法如下表所示. (其中,,都是正整数)根据以上信息,解答下列问题:(1)写出与的关系式;(2)当时,该企业能援助多少所学校?(3)根据震区灾情,该企业计划再次提供不超过万元的捐款,按照原来的分配方案援助其它学校.若由 (2)确定,则再次提供的捐款最多又可以援助多少所学校?
已知,如图,抛物线与轴交于点,与轴交于点,点的坐标为,对称轴是. (1)求该抛物线的解析式; (2)点是线段上的动点,过点作∥,分别交轴、于点P、,连接.当的面积最大时,求点的坐标; (3)在(2)的条件下,求的值.
已知:如图,内接于⊙O, 为⊙O的直径,, 点是上一个动点,连结、和, 与相交于点, 过点作于,与相交于点,连结和. (1)求证:; (2)如图1,若, 求证:; (3) 如图2,设, 四边形的面积为,求与之间的关系式.
已知:如图,矩形ABCD中, ,,点P是AD边上一个动点,, 交于点,对应点也随之在上运动,连结. (1)若是等腰三角形,求的长; (2)当时,求的长.
为迎接中共十八大的胜利召开,需要铺设一条长为3000米的管道.为了尽量减少施工对交通所造成的影响,实际施工时每天铺设管道的长度为原计划的1.5倍,结果提前25天完成任务, (1)求原计划每天铺设管道的长度. (2)求实际施工时每天铺设管道的长度.
如图,已知A(1,5)、B(1,2)、C(5,2)。若以点B为中心,顺时针旋转90°。A、C旋转后对应的点是、。 (1)求; (2)写出、的坐标。