某运输公司接受了向抗洪救灾地区每天送至少支援物资的任务.该公司有辆载重的型卡车与辆载重为的型卡车,有名驾驶员,每辆卡车每天往返的次数为型卡车次,型卡车次;每辆卡车每天往返的成本费型为元,型为元.请为公司安排一下,应如何调配车辆,才能使公司所花的成本费最低?若只安排型或型卡车,所花的成本费分别是多少?
(本小题满分13分)在等比数列中,且,是和的等差中项. (Ⅰ)求数列的通项公式; (Ⅱ)若数列满足,(),求数列的前项和.
(本小题满分13分)设函数,. (Ⅰ)求的最小正周期及单调递增区间; (Ⅱ)若时,,求函数的最大值,并指出取何值时,函数取得最大值.
已知函数. (1)求函数的单调区间; (2)若函数上是减函数,求实数a的最小值; (3)若,使成立,求实数a的取值范围.
已知数列满足. (1)若,求证:数列是等比数列并求其通项公式; (2)求数列的通项公式; (3)求证:++ +.
已知椭圆C:(a>b>0)的上顶点为A,左,右焦点分别为F1,F2,且椭圆C过点P(,),以AP为直径的圆恰好过右焦点F2. (1)求椭圆C的方程; (2)若动直线l与椭圆C有且只有一个公共点,试问:在轴上是否存在两定点,使其到直线l的距离之积为1?若存在,请求出两定点坐标;若不存在,请说明理由.