将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片和.将这两张三角形胶片的顶点与顶点重合,把绕点顺时针方向旋转,这时与相交于点.(1)当旋转至如图②位置,点,在同一直线上时,与的数量关系是 . 2分(2)当继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由.(3)在图③中,连接,探索与之间有怎样的位置关系,并证明.
正方形ABCD的边长为8,正方形EFGH的边长为3,正方形EFGH可在线段AD上滑动. EC交AD于点M. 设AF=x,FM=y,△ECG的面积为s. (1)求y与x之间的关系; (2)求s与x之间的关系; (3)求s的最大值和最小值; (4)若放宽限制条件,使线段FG可在射线AD上滑动,直接写出s与x之间的关系.
如图,∠C=90°,∠CAE=∠ABC,AC=2,BC=3. (1)判断AE与⊙O的位置关系,并说明理由; (2)求OB的长;
如图,△ABC∽△DEC,CA=CB,且点E在AB的延长线上. 求证:(1)AE=BD;(2)△BOE∽△COD.
某市教育局对本市八年级学生体育技能情况做抽样调查,统计结果如图. (1)这次抽样调查了多少人? (2)已知该市八年级学生总数为4200,大约有多少人体育技能不达标? (3)如果希望通过两个月的锻炼,使短跑不达标人数减少252,求平均每月的下降率.
如图,在菱形ABCD中,E是AB的中点,且DE⊥AB, AB=a. (1)求∠ABC的度数; (2)求对角线AC的长; (3)求菱形ABCD的面积.