(本小题满分12分)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品在该售价的基础上每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.(14分)(1)求与的函数关系式并直接写出自变量的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
.已知函数 (1)求时的取值范围; (2)若且对任意成立; (ⅰ)求证是等比数列; (ⅱ)令,求证.
已知为实数, (Ⅰ)求导数; (Ⅱ)若,求在上的最大值和最小值; (Ⅲ)若在和上都是递增的,求的取值范围.
已知三棱锥中,,,,为上一点,,分别为的中点. (1)证明:; (2)求与平面所成角的大小.
三人独立破译同一份密码.已知三人各自破译出密码的概率分别 为且他们是否破译出密码互不影响. (1)求恰有二人破译出密码的概率; (2)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.
已知圆C的圆心C(-1,2),且圆C经过原点。 (1)求圆C的方程 (2)过原点作圆C的切线,求切线的方程。 (3)过点的直线被圆C截得的弦长为,求直线的方程。