(本小题满分12分)在中,内角对边的边长分别是,已知,. (1)若的面积等于,求;(2)若,求的面积.
已知函数.(1)求证函数在区间上存在唯一的极值点,并用二分法求函数取得极值时相应的近似值(误差不超过);(参考数据,,)(2)当时,若关于的不等式恒成立,试求实数的取值范围.
设,在线段上任取两点(不含两端点),将线段分成了三条线段.(1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率;(2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率.
如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分线段PC,且分别交AC、PC于D、E两点,又PB=BC,PA=AB。(1)求证:PC⊥平面BDE;(2)若点Q是线段PA上任一点,判断BD、DQ的位置关系,并证明你的结论;(3)若AB=2,求三棱锥B-CED的体积
已知函数的图像经过点A(0,0),B(3,7)及C,为数列 的前n项和(I)求(II)若数列满足,求数列的前n项和
在△ABC中,内角A,B,C所对边长分别为,,,.(1)求的最大值及的取值范围;(2)求函数的最大值和最小值.