已知函数。①求函数的最小正周期和单调递增区间;②若,求函数的最大值及取最大值时对应的值。
(本小题满分12分)甲、乙、丙三人进行某项比赛,每局有两人参加,没有平局,在一局比赛中甲胜乙的概率为,甲胜丙的概,乙胜丙的概率为,比赛的规则是先由甲和乙进行第一局的比赛,然后每局的获胜者与未参加此局比赛的人进行下一局的比赛,在比赛中,有人获胜两局就算取得比赛的胜利,比赛结束网]
已知数列是一个公差大于0的等差数列,且满足(1)求数列的通项公式。(2)若数列和数列满足等式 :(n为正整数),求数列的前项和。
(本小题满分12分)已知角、、是的内角,分别是其对边长,向量,。 (1)求角的大小; (2)若 求的长.
男运动员6名,女运动员4名,其中男女队长名1人,选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名(2)至少有一名女运动员(3)队长中至少有1人参加
某食品厂进行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工费为元(为常数,且,设该食品厂每公斤蘑菇的出厂价为元(),根据市场调查,销售量与成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.(1)求该工厂的每日利润元与每公斤蘑菇的出厂价元的函数关系式; (2)若,当每公斤蘑菇的出厂价为多少元时,该工厂的利润最大,并求最大值