(本小题满分10分)选修4—4:坐标系与参数方程在极坐标系中,曲线,过点A(5,α)(α为锐角且)作平行于的直线,且与曲线L分别交于B,C两点。(1)以极点为原点,极轴为x轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L和直线的普通方程;(2)求|BC|的长。
(Ⅰ)求过点(1,﹣1),且与直线x+4y﹣7=0垂直的直线方程. (Ⅱ)求过点(1,﹣1),且与直线x+4y﹣7=0平行的直线方程.
假设你家订了一份报纸,送报人可能在早上6点—8点之间把报纸送到你家,你每天离家去工作的时间在早上7点—9点之间 (1)你离家前不能看到报纸(称事件A)的概率是多少?(8分,须有过程) (2)请你设计一种随机模拟的方法近似计算事件A的概率(包括手工的方法或用计算器、计算机的方法)
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点. (1)求该椭圆的标准方程; (2)若是椭圆上的动点,求线段中点的轨迹方程;
在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱. (1)摸出的3个球为白球的概率是多少? (2)摸出的3个球为2个黄球1个白球的概率是多少? (3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?
命题P:函数y=是增函数,命题q:对任意x都有恒成立若“p或q”为真,“p且q”为假,求a的取值范围