(本小题满分14分)已知函数,,图象与轴异于原点的交点M处的切线为,与轴的交点N处的切线为, 并且与平行.(1)求的值; (2)已知实数t∈R,求函数的最小值;(3)令,给定,对于两个大于1的正数,存在实数满足:,,并且使得不等式恒成立,求实数的取值范围.
某电厂冷却塔外形是如图所示的双曲线的一部分绕其中轴(双曲线的虚轴)旋转所成的曲面,其中A,A′是双曲线的顶点,C,C′是冷却塔上口直径的两个端点,B,B′是冷却塔下底直径的两个端点,已知AA′="14" m,CC′="18" m,BB′="22" m,塔高20 m. (1)建立坐标系并写出该曲线的方程; (2)求冷却塔的容积(精确到10 m3,塔壁厚度不计,π取3.14)
直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=,BC=.椭圆C以A、B为焦点且经过点D. (1)建立适当坐标系,求椭圆C的方程; (2)若点E满足,问是否存在不平行AB的直线l与椭圆C交于M、N两点且,若存在,求出直线l与AB夹角的范围,若不存在,说明理由
求双曲线y=上任意一点P处的切线与两坐标轴围成的三角形面积
已知二次函数满足: (1)在时有极值; (2)图象过点,且在该点处的切线与直线平行.求的解析式;
在△ABC中,BC=a,AC=b,a,b是方程的两个根, 且。 求:(1)角C的度数; (2)AB的长度。