阅读下面的情境对话,然后解答问题(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在RtABC 中, ∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若RtABC是奇异三角形,求a:b:c;(3)如图,AB是⊙O的直径,C是上一点(不与点A、B重合),D是半圆的中点,CD在直径AB的两侧,若在⊙O内存在点E使得AE=AD,CB=CE.1求证:ACE是奇异三角形;2当ACE是直角三角形时,求∠AOC的度数.
在平面直角坐标系中,顺次连结A(-2,0)、B(4,0)、C(-2,-3)各点,试求:A、B两点之间的距离。点C到X轴的距离。△ABC的面积。
如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D。 试说明:AC∥DF。 解:因为∠1=∠2(已知) ∠1=∠3,∠2=∠4() 所以∠3=∠4(等量代换) 所以∥() 所以∠C=∠ABD,() 又因为∠C=∠D(已知) 所以∠D=∠ABD(等量代换) 所以 AC∥DF()
如图,已知直线被直线所截,∥,如果,求∠1的度数。
某农场名职工耕种公顷土地,分别种植水稻、蔬菜和棉花,种植这些农作物每公顷所需人数如表1;另外设水稻和蔬菜的种植面积分别为公顷、公顷,每公顷各种农作物预计产值如表2。用含的式子表示。为完成国家的粮食任务,水稻、蔬菜和棉花的种植面积至少需要12公顷,且水稻、蔬菜和棉花的种植面积均为整数,那么水稻、蔬菜和棉花的种植面积应各为多少公顷?请安排出种植方案。若设总产值为,那么怎样安排种植面积才能取得最大效益?
在平原上有一条笔直的公路,在公路同侧有A、B两个村庄。若以公路为轴建立平面直角坐标系,如图1:已知A、B两个村庄的坐标分别为(2,2),(7,4),一辆汽车(看成点P)在轴上行驶.汽车行驶过程中到A、B两村距离之和最小为多少?汽车行驶过程中到A、B两村距离之差最大为多少?