阅读下面的情境对话,然后解答问题(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在RtABC 中, ∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若RtABC是奇异三角形,求a:b:c;(3)如图,AB是⊙O的直径,C是上一点(不与点A、B重合),D是半圆的中点,CD在直径AB的两侧,若在⊙O内存在点E使得AE=AD,CB=CE.1求证:ACE是奇异三角形;2当ACE是直角三角形时,求∠AOC的度数.
"中国结"是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有"中国结"图案的不透明卡片 A , B , C ,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有 A 卡片的概率.
先化简,再求值: ( a + 1 ) 2 + a ( 1 - a ) - 1 ,其中 a = 7 .
在平面直角坐标系中,函数 y = x 2 - 2 ax - 1 ( a 为常数)的图象与 y 轴交于点 A .
(1)求点 A 的坐标.
(2)当此函数图象经过点 ( 1 , 2 ) 时,求此函数的表达式,并写出函数值 y 随 x 的增大而增大时 x 的取值范围.
(3)当 x ⩽ 0 时,若函数 y = x 2 - 2 ax - 1 ( a 为常数)的图象的最低点到直线 y = 2 a 的距离为2,求 a 的值.
(4)设 a < 0 , Rt Δ EFG 三个顶点的坐标分别为 E ( - 1 , - 1 ) 、 F ( - 1 , a - 1 ) 、 G ( 0 , a - 1 ) .当函数 y = x 2 - 2 ax - 1 ( a 为常数)的图象与 ΔEFG 的直角边有交点时,交点记为点 P .过点 P 作 y 轴的垂线,与此函数图象的另一个交点为 P ' ( P ' 与 P 不重合),过点 A 作 y 轴的垂线,与此函数图象的另一个交点为 A ' .若 AA ' = 2 PP ' ,直接写出 a 的值.
如图①,在 ΔABC 中, ∠ ABC = 90 ° , AB = 4 , BC = 3 .点 P 从点 A 出发,沿折线 AB - BC 以每秒5个单位长度的速度向点 C 运动,同时点 D 从点 C 出发,沿 CA 以每秒2个单位长度的速度向点 A 运动,点 P 到达点 C 时,点 P 、 D 同时停止运动.当点 P 不与点 A 、 C 重合时,作点 P 关于直线 AC 的对称点 Q ,连结 PQ 交 AC 于点 E ,连结 DP 、 DQ .设点 P 的运动时间为 t 秒.
(1)当点 P 与点 B 重合时,求 t 的值.
(2)用含 t 的代数式表示线段 CE 的长.
(3)当 ΔPDQ 为锐角三角形时,求 t 的取值范围.
(4)如图②,取 PD 的中点 M ,连结 QM .当直线 QM 与 ΔABC 的一条直角边平行时,直接写出 t 的值.
【教材呈现】如图是华师版八年级下册数学教材第121页的部分内容.
1.把一张矩形纸片如图那样折一下,就可以裁出正方形纸片,为什么?
【问题解决】如图①,已知矩形纸片 ABCD ( AB > AD ) ,将矩形纸片沿过点 D 的直线折叠,使点 A 落在边 DC 上,点 A 的对应点为 A ' ,折痕为 DE ,点 E 在 AB 上.求证:四边形 AEA ' D 是正方形.
【规律探索】由【问题解决】可知,图①中的△ A ' DE 为等腰三角形.现将图①中的点 A ' 沿 DC 向右平移至点 Q 处(点 Q 在点 C 的左侧),如图②,折痕为 PF ,点 F 在 DC 上,点 P 在 AB 上,那么 ΔPQF 还是等腰三角形吗?请说明理由.
[结论应用]在图②中,当 QC = QP 时,将矩形纸片继续折叠如图③,使点 C 与点 P 重合,折痕为 QG ,点 G 在 AB 上.要使四边形 PGQF 为菱形,则 AD AB = .